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The present paper analyses a transshipment type fractional programming under stochastic demand.  The

objective is to maximize the expected profitability of the total transshipment schedule, the net expected

profitability being defined as the total expected revenue minus the loss in transshipment. The stochastic

transshipment problem is reduced to an equivalent deterministic transportation problem for which an algorithm

is developed and numerically illustrated

1. INTRODUCTION

Orden [7] proposed a generalized

transportation model in which transshipment

through intermediate points is permitted. In

this paper transshipment problem that often

occurs in the distribution system of the

national department store chain is considered,

treating the demands as uncertain. To evaluate

the performance of an economic activity,

“profitability” (i.e. the ratio of the profit earned

to the costs incurred) is sometimes regarded

as a better indicator than the net profit. In this

paper, we study the stochastic linear fractional

programming problem in which the

parameters of only the numerator of the

fractional objective functional are treated as

random variables while the parameters of the

denominator are assumed to be fixed. The

purpose of this paper is to develop an

algorithm for a capacitated transshipment

problem in which the demands are random.

The objective is to maximize the expected

profitability of the transshipment schedule. The

algorithm developed for the resulting

deterministic problem, itself is the outcome of

the basic result that for linear fractional

programming the absolute minimum occurs at

a basic feasible solution. The technique

applied by Ferguson and Dantzig [1] are used

for dealing the problems under stochastic

environment.

2. NOTATIONS AND THE

FORMULATION OF THE

PROBLEM

We consider a transshipment

problem with m sources and n sinks

numbered as 1, 2, … ,m and n sinks

numbered as m+1, m+2,.…, m+n. Let,

a
i 
 = the quantity available at source

i = 1,2,……..m,

d
j  

= the quantity demanded at sink

j  =  m+1,m+2,………….,m+n,

x
ij
 =  the quantity shipped from station i to j

(i, j = 1,2,……,m+n),

c
ij
 =  the per unit shipment cost from station i to

j (i, j = 1,2,……,m+n),

u
i 
 = quantity transshipped at the station i

(i = 1,2,……,m+n),

c
i
 = per unit transshipment cost (including

unloading, reloading, and storage etc.) at the

station i (i = 1,2,……,m+n),    The problem is

to determine x
ij
 so as to minimize the total cost

of transportation and transshipment. It may be

mathematically stated as under:

Problem P
1
:  Find x

ij 
so as to

Minimize F =
* *

1 1 1

m n m n m n

ij ij i i

i j i

c x c u
+ + +

= = =

+∑ ∑ ∑ ....(2.1)
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subject to

*

1

m n

ij

j

x
+

=

∑

=

1,2,.....,

1,...

i i

i

a u i m

u i m m n

+ =


= + +

...(2.2 )

...(2.2 )

a

b
..(2.2)

*

1

m n

ij

i

x
+

=

∑

=

1,2,.....,

1,...

j

j j

u j m

d u j m m n

=


+ = + +

...(2.3 )

...(2.3 )

a

b
...(2.3)

x
ij
 

≥

 0 for all i & j       …(2.4)

*

1

m n

j

+

=

∑

 indicates that the term j = i is

excluded from the sum. The constraints

(2.2a) and (2.2b) implies that the total

quantity that leaves the source  i ( = 1, 2, …,

m) is equal to the quantity available plus the

quantity transshipped and the total quantity

that leaves the sink  i ( = m+1, m+2, …,

m+n) is equal to the quantity transshipped.

Similarly constraints (2.3a) and (2.3b) implies

that the total quantity that arrives at a source i

( = 1, 2, …, m) is equal to the quantity that

source transships and the total arriving at a

sink is equal to the demand at that sink plus

the quantity that the sink transships.

Constraints (2.4) is the usual nonnegative

restrictions. Here u
i
 are unknown, so we

impose an upper bound u
o
 (say), on the

amount that can be transshipped at any point,

so that

 u
i
 = u

o
 – x

ii
, i = 1, 2, …, m  …(2.5)

where, x
ii
 is a nonnegative slack. After

substituting (2.5) in (2.1) to (2.3) and on

simplifying the original transshipment problem

P
1
 is reduced to the following genuine

transportation type linear programming

problem.

Problem P
2
:

Minimize  F =  

1 1 1

m n m n m n

i j i j i o

i j i

c x c u
+ + +

= = =

+∑ ∑ ∑

subject to

1

1,2,.....,

1,...

m n
i o

ij

j o

a u i m
x

u i m m n

+

=

+ =
= 

= + +
∑

 
...(2.6 )

...(2.6 )

a

b

        ....(2.6)

1

1,2,.....,

1,...

m n
o

ij

i j o

u j m
x

d u j m m n

+

=

=
= 

+ = + +
∑

 
...(2.7 )

...(2.7 )

a

b

        …(2.7)

x
ij
 

≥

 0 for all i & j       …(2.8)

where c
ii
 = -c

i
, and the asterisk (*) on

the summations has now been disappeared. As

u
i 
≥ 0, we must have x

ii
 ≤ u

o

, which is guaranteed

by equations (2.6) – (2.7), because any x
ii
 will

always appear in one equation that has u
o
 on

the right hand side. Here, the upper bound u
o

can interpreted as the size of a fictitious

stockpile at each source and sink which is large

enough to take care of all transshipments.

Assume initially a value for u
o
 which is

sufficiently large to ensure that all x
ii
 will be in

the optimal basis. Such a value can be easily

found as the volume of goods transshipped at

any point cannot exceed the total volume of

goods produced (or received). Hence, set,

u
o
 = 

1

m

i

i

a
=

∑

….(2.9)

which ensures that u
o
 is not limiting. The

unused stockpile at the station i = 1, 2,

……. m+n, if any, will be absorbed in the

slack x
ii
.

3. PROBLEM REFORMULATION

UNDER STOCHASTIC

ENVIRONMENT [2, 6]

Till now, we have treated the

demand d
j
 as uncertain as if they are fixed

constraints. However, for our study, we

assume d
j
 as an independent discrete

random variable with known probability

distributions. Here A
ij
 is the additional upper

bound restrictions on route capacities (i, j).

Let d
ij
 be the per unit procurement cost of

the product at origin i plus the per unit loss

due to pilferage etc. on the route (i, j); r
j
 and
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s
j
 are respectively the revenue received (e.g.

sale proceeds) and handling costs (e.g.

seller’s commission etc.) for each unit of

demand satisfied at destination j; 

φ

 and 

ϕ

are yet unknown functions representing

respectively the total expected revenue and

the total expected handling costs at destination

j if a total of y
j
 unit is shipped to this

destination. The objective function is to

maximize the ratio of the net expected revenue

to the total cost incurred. Thus our problem is

of the following form:

Problem P
3
:  Max. Z =

 …(3.1)

subject to

1

1, 2, .....,

1, ...

m n
i o

ij

j o

a u i m
x

u i m m n

+

=

+ =
= 

= + +
∑ …(3.2)

1

1, 2, .....,

1, ...

m n
o

ij

i j o

u j m
x

d u j m m n

+

=

=
= 

+ = + +
∑  …(3.3)

0 ( , )
ij ij

x A i j≤ ≤ ∀                      ...(3.4)

Here, the third term of the denominator viz.
m n

i o

i 1

c u
+

=

∑  is a constant.

The maximization of the above Problem

P
3
 is obviously, equivalent to maximizing:

Expected Profitability

Expected Net Revenue- TotalCost

Total Cost
=

Expected Net Revenue
= 1

Total Cost
−

 ...(3.5)

Due to the presence of the capacity

restrictions, cases may arise in which the

problem has no feasible solution. However,

for the present study we assume that

a)  the set of feasible solutions is regular, and

b)  the denominator of the objective functional

Z is always strictly positive.

4. THE EQUIVALENT

DETERMINISTIC PROBLEM

[2, 5]

Let the demand d
j
’s at various

destinations be independent random variables

and the probability distribution of d
j
 (j = 1,

2,…, n) be in increasing order as follows:

Demand    d
j

  d
1j
   <   d

2j
  <    d

Hjj

Prob.(d
j
 = d

hj
) = p

hj 
 p

1j 
 p

2j
p

Hjj

Prob. (d
j
 

≥

 d
hj
) = π

hj
π

1j
=  π

2j
=

 ..... π
Hjj

= p
Hjj

To determine the functions φ
j
(s

j
, y

j
)

and 

ϕ

j
(r

j
, y

j
) note that y

j
, the net quantity

shipped to sink j, can be any amount

between the lowest value d
1j
 and the highest

value d in the probability distribution of

the demand d
j
 (j = 1, 2, …n).

If 

0 ,

 then each of the y
j
 units shall

be absorbed with probability 1 j
π  (= 1).

Hence, the expected revenue is 

=

.

If d
1j ≤  y

j
  

≤

 d
2j
, then each unit upto d

1j
 shall

be absorbed with probability 

π

 and each of

the additional units (y
j
 - d

1j
) shall be

absorbed with probability 

π

Hence, the expected revenue is =

s d s y d

So, in general, if d
hj ≤  y

j
 

≤

 d
h+1,j

, then the

expected revenue is

= s {  d  +   (d  - d ) + ...... (d  - d ) +   

Let us now break y
j
 into incremental units y

hj

(h = 1, 2,…H
j
) as:
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j 1j 2j 3j hj
y  = y  + y  + y  + ...... + y  + .... ...(4.1)

where,

1 1 1

2 2 1 2

1,

0 ( )

0 ( )

: : : :

0 ( )
j j j j

j j j

j j j j

H j H j H j H j

y d F say

y d d F say

y d d F say−

≤ ≤ = 


≤ ≤ − = 


≤ ≤ − = 

..(4.2)

Relation (4.1) makes physical sense only if

there exists some h = h
j
 (say) such that all

intervals below the h
j

th interval are filled to

capacity and all intervals above it are empty

i.e.

( 1,2,..., 1)

( )

0 ( 1,..., )

hj hj j

hj hj j

hj j j

y F h h

y F h h

y h h H

= = −


≤ = 


= = + 

 ...(4.3)

Assuming for the time being that the

conditions (4.3) holds, then the total expected

revenue and the total expected handling cost

at destination j are:

1

( , )
jH

j j j j hj hj

h

r y r yφ π
=

=∑
 and ...(4.4)

1

( , )
jH

j j j j hj hj

h

s y s yϕ π
=

=∑  ...(4.5)

After putting the value of ( , )
j j j

r yφ  and

( , )
j j j

s yϕ  from (4.4) and (4.5), the

deterministic equivalent of Problem P
3
 is of

the following form Problem P
4
:

Problem P
4 
: 1 1

1 1

j

ij

Hn

hj hj

j h

m nx

ij ij

i j

y

Max Z

x

τ

σ

= =

= =

=

∑∑

∑∑
...(4.6)

(where, ( )
hj j j hj

r sτ π= −  and

( )
ij ij ij

c dσ = + )

subject to (2.6) and (2.7a)

1 1

0
jHm n

ij hj

i h

x y
+

= =

− =∑ ∑  j =  1,2, ...., n  ....(4.8)

, 0
ij hj

x y ≥  

( , , )i h j∀

 ...(4.9)

ij ij
x A≤

 

( , )i j∀

 ...(4.10)

hj hj
y F≤

 ( , )h j∀  ...(4.11)

and subject to the additional stipulation that the

constraints (4.3) are also satisfied.

Fortunately, it turns out that (4.3) do not

restrict our choice of optimum solution in any

way. This we have proved in the theorem,

Javaid et. al. [2].

5. PRELIMINARIES TO THE

SOLUTION OF PROBLEM P
4

1. It is assumed that the set of all feasible

solutions of Problem P
4
 is regular (i.e. non-

empty and bounded) and that the

denominator of the objective functional is

positive for all feasible solutions.[4]

2.  The special structure of Problem P
4
,

permits us to arrange it into an array in Table

(5.1).

3. Problem P
4
 is a transportation type linear

fractional programming problem with upper

bound restrictions on some variables;

therefore its global maximum exists at a basic

feasible solution of its constraints, [5].

4. We shall, hereinafter, call the constraints

(4.7) through (4.10) as the original system

and the constraints (4.7) through (4.11) as

the capacitated system.  As none of the

constraints in the original system is

redundant, a basic feasible solution to the

original system shall contain (m+n) basic

variables. For the capacitated system also, a

basic feasible solution shall contain (m+n)

basic variables and the same may be found

by working on the original system provided

that some of the nonbasic variables are

allowed to take their upper bound values [2].
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The number of rows in the above table is

(m+H) where H = max H
j
. Obviously, there

shall be some empty boxes near the bottom of

the table, which may be crossed out.

Absence of the total column below the double

line in the above table, indicates that there are

no row equations for y
hj
 variables. To obtain

the column equations (4.8), each y
hj
 has to be

multiplied by (-1). We have omitted (-1) from

y
hj
 boxes for convenience.

6. INITIAL BASIC FEASIBLE

SOLUTION AND OPTIMALITY

CRITERIA

To start with, we fix the demands d
j
’s

approximately equal to their expected values

such that

1 1

m n m

j i

j m i

d a
+

= + =

=∑ ∑

and also such that for all j except j = j*, each

d
j
 falls at the upper end of one of the intervals

y
hj
 into which d

j
 has been divided i.e.

d F

for some 

h H

 and for all j except j = j*

(the d
j
 can always be so chosen that it is

done).

With these fixed demands the upper portion

of the Table (5.1) resembles a (m+n) ×
(m+n) standard transportation problem for

which an initial basic feasible solution with

{2(m+n)-1} basic variables may be obtained

as follows:

TABLE (5.1)

SPECIAL STRUCTURE OF PROBLEM 
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Ignore the upper bounds on x
ij
’s and write

down the basic feasible solution by the

North-West Corner Rule or any other

method for standard transportation. If this

solution satisfies the upper bound constraints,

we hit the target. If it violates these

constraints, however, then we divide the

basic variables into two groups -

(a) the infeasible variables which violate

their upper bounds; and

(b) the feasible variables which do not

violate them.

Now, we discard temporarily the

upper bounds on the infeasible variables and

replace the original objective function by one

that minimizes the sum of the infeasible

variables. The existing solution now acts as

the initial basic feasible solution for the

artificial problem we have just created, and

we begin the iterations, keeping in mind the

upper bounds on the feasible variables.

As we proceed, some infeasible

variables will increase while others will

decrease, but their general level decreases

because we decrease their sum. At certain

iteration, as soon as some of the originally

infeasible variables dip below or become equal

to their upper bounds, these variables join the

group of feasible variables, become upper

bounded and are removed from the objective

function. We continue this till

(a) all the infeasible variables disappear or

(b) the objective function cannot be further

improved while some infeasible variables still

remain.

The later indicates that no feasible solution of

the capacitated system exists while the former

indicates that a basic feasible solution has been

found.

After a basic feasible solution with

{2(m+n)-1} variables has been found for the

transportation problem (represented in the upper

portion of Table (5.1)), we enter in each column

of the lower portion of the Table (5.1), non

basic y
hj
’s at their upper bounds in turn h =1,

2,…. until we have entered enough non basic

y
hj
 so that their sum over h is equal to d

j
 (fixed

earlier).

Obviously, we shall never have to

enter y
hj
 below its upper bound except in

column j = j*, where the last nonzero entry

will be 

* *
.

hj hj
y F≤

 This last entry and the

{2(m+n)-1} basic x
ij
 found earlier, constitute

the required initial basic feasible solution with

2(m+n) basic variables. In case, the last non

zero entry in column j* is also at its upper

bound, then we take the last y
hj
 entry of any

column as or 2(m+n)th basic variable.

7. OPTIMALITY CRITERIA

Let the simplex multipliers corresponding to

the objective function

1

1 1

jHn

hj hj

j h

Z yτ
= =

= ∑∑  be ( 1, 2, ..., )
i

i mµ ∀ =

and ( 1, 2, ..., )
i

v j n∀ =  and corresponding

to the objective function

2

1 1

m n

ij ij

i j

Z xσ
= =

=∑∑  be ( 1, 2, ..., )
i

i mµ ∀ =

and ( 1, 2, ..., )jv j n∀ = .

These are determined by solving the

following equations.

ij

hj

0 for basic x

0 for basic y

i j

hj j

µ ν

τ ν

+ = 


− =          ...(7.1)

ij

hj

0 for basic x

0 for basic y

ij i j

j

σ µ ν

ν

+ + = 


− = 

 ...(7.2)

Each of the systems (7.1) and (7.2) involves

(m+n) equations in as many as unknowns,

, ,
i j i

vµ µ

 and 

j
v

 and may be shown to be

triangular or atleast semi-triangular, so that

both of these systems are easily solvable.

Let the relative cost coefficients

corresponding to the variables x
ij
 and y

hj
 be

ij
λ

 and 

hj
η

 for the objective function Z
1
 and
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λ

 and 

η

 for the objective function Z
2
.

These are determined by solving the following

equations.

λ µ ν

η τ ν

 ...(7.3)

λ σ µ ν

η ν

...(7.4)

For a given basic feasible solution (x
ij
, y

hj
), the

value of the objective functional Z is:

(say) 7.5

But, the relative cost coefficients

corresponding to the for basic variables and

also the values of the non basic x
ij
 are zero.

As regards the values of non basic y
hj
’s, some

of them are zero and the others at their upper

bounds, Fs
hj
’s. Hence,

* * * *

1 1 1 1 1 1 1

2* * * *

1 1 1 1 1 1

( )

( )

j

j

Hm n m n m n m n m n

ij ij hj hj i i o j o

i j j h i i

Hm n m n m n m n m n

ij ij hj hj i i o j o

i j j h i i

A F a t t
Z

Z
A F a t t

λ η µ ν

λ η µ ν

+ + + + +

= = = = = =

+ + + + +

= = = = = =

 
+ − + + 

 
=

 
+ − + + 

 

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

...(7.6)

where *∑  indicates sum over those non

basic y
hj
’s which are at their upper bounds.

Differentiating (7.6) partially w.r.t. the

nonbasic variables (x
ij
, y

hj
), we get,

  and

2 1

2

2

( )

( )

hj hj

hj

Z ZZ

y Z

η η−∂
=

∂

Defining 

2 1

2 1

ij ij ij

hj hj hj

Z Z

Z Z

λ λ

η η

∆ = − 


∆ = − 
 ...(7.7)

We observe that the value of Z can be

improved in two possible ways by:

* increasing the nonbasic x
ij
 (or y

hj
) whose

∆

 (or 

∆

) are positive

* decreasing those nonbasic x
ij
 (or y

hj
)

whose 

∆

 (or 

∆

) are negative.

Thus a basic feasible solution is optimum iff

...(7.8)

If any of the optimality criteria (7.8) is violated,

the current solution can be improved. The

nonbasic variable which violates (7.8) most

severely is selected to enter the basis. The values

of the new basic variables are found in the usual

manner by applying 

θ

-adjustments. It should,

however, be kept in mind that the coefficient of

each y
hj
 in the column equations (4.8) is (-1).

The variable to leave the basis is the

one that becomes either zero or equal to its

upper bound. If two or more basic variables

reach zero or their upper bounds

simultaneously then only one of them

becomes nonbasic. Should it happen that the

entering variable itself attains upper or lower

bound (zero) without simultaneously making

any of the basic variables zero or equal to its

upper bounds, the set of basic variables

remains unaltered; only their values are

changed to allow the so-called entering

variable to be fixed at its upper or lower

bound.

8. ALGORITHM OF THE

DETERMINISTIC PROBLEM

The step-by-step computational

algorithm for determining the optimum solution

is given as follows:
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Step 1. First of all calculate initial/improved

basic feasible solution and record them in a

working table.

Step 2. Then obtain the values of simplex

multipliers 

( , ,
i j i

vµ µ

 and 

)jv

 and relative

cost coefficients by given equations from

equations (7.1) & (7.2) and (7.3) & (7.4)

and record them in current working table.

Step 3. Calculate the value of the objective

function Z  by the equation (4.6).

Step 4. Then for the non-basic variables,

calculate 

ij
∆

 and 

hj
∆

 and test whether the

solution is optimum or not. If yes, the process

terminates and if not, proceed to find the 

ij
∆

(or 

hj
∆

) which violates the optimality criteria

(7.8), most severely.

Step 5. Find the entering variable as the one

whose corresponding 

ij
∆

 (or 

hj
∆

) violates

the optimality criteria most severely.

Step 6. Apply 

θ

-adjustments and determine

the outgoing variable (if any) and find the

maximum value 

.θ

Step 7. Go to step 1.

9. NUMERICAL EXAMPLE

Consider the stochastic

Transportation problem involving

Transshipment with 3 origins and 2

destinations in which shipping charges (costs

from origin to origin, destination to destination

 I II III   A B 

 

I 

21 

0  0 

4 

3  1 

3 

1  2 

 

A 

21 

0  0 

3 

1  3 

 

II 

4 

3  1 

21 

0  0 

5 

2  4 

 

B 

3 

1  3 

21 

0 

 

III 

3 

1  2 

5 

2  4 

21 

0  0 

 

 I II III   A B 

 
I 

21 
0  0 

4 
3  1 

3 
1  2 

 
A 

21 
0  0 

3 
1  3 

 

II 

4 

3  1 

21 

0  0 

5 

2  4 

 

B 

3 

1  3 

21 

0 

 

III 

3 

1  2 

5 

2  4 

21 

0  0 

 

 j bhj phj hjπ  hjjjhj )sr( π−=τ  Rhj 

 
1 

9 
12 
16 

0.2 
0.6 
0.2 

1.0 
0.8 
0.2 

10.0 
8.0 
2.0 

9 
3 
5 

2 7 
10 

0.2 
0.8 

1.0 
0.8 

5.0 
4.0 

7 
3 

Table (8.5) Probability Distribution of demand

and origin to destinations) denoted by d
ij
 and

c
ij
 are given in the form for each boxes in

Table (8.1), Table (8.2) to Table (8.3)

respectively. In Table (8.4), the initial basic

feasible solution by the North-West Corner is

given.

         Table (8.1)           Table (8.2)

                 Aij 

dij              cij 

 

The value of 

ij
σ

 are calculated as follows:

ij
σ

 = d
ij
 + c

ij
 and are written in Table (8.4)

along with its initial basic solution by North-

West Corner Rule of the transportation

problem.

Table (8.3)        Table (8.4)

In order to determine an optimum solution

for stochastic transportation problem, we

first calculate 

hj
τ

 and R
hj 

and write down the

equivalent deterministic Problem P
4
 in the

form of Table (8.5).
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Deterministic Version of Problem P
4
 along

with the calculated values of  and  are given in

Table(8.6)  a
i

Iteration-1

Step-1. In order to obtain initial basic feasible

solution we fix the demands at b
1
 = 12 and b

2
 =

9, and then determine a starting basic feasible

solution to the (3 

×

 2) standard transportation

problem represented in Table (8.4), by the

North-West corner Rule.

Then a standard transshipment problem can

be formed (ignoring the upper bounds). We

get,

x
11

 = 21, x
14

 = 10, x
15

 = 2,

x
22

 = 21, x
24

 = 4, x
25

 = 1,

x
33

 = 21, x
35

 = 6, x
44

 = 21,

x
55

 = 21

This solution violates the upper bound

constraints as 

21 

 

 

0      5  

 

0       3  

8   - θ  

 

2   + θ  

 

 

31 

 

-4 

 

-1 

 

0       3 

21 

 

 

0       5  

4 

0   –1.5 

1 

 

 

26 

 

-4 

 

-2 

 

0       3 

 

0      7  

21  

 

 

0     M +3 

6 

 

 

27 

 

-4 

 

-1 

 
0       6 

 
0   6.5  

 
0  M+3 

21 
 

 
0       6  

 
21 

 
-4 

 
2 

 

0       2 

 

0      4  

 

0       2  

 

0         2 

21 

 

 

21 

 

-4 

 

0 

 9       -50 

6        2 

7 

1       0  

3- θ -138 

4        2 

2  + θ  

 

 
-2       2 

 

1ν = 4     2ν = 4   3ν = 4 4ν = 4 5ν = 4 

1ν = 1     2ν = 2   3ν = 1 4ν = -2  5ν = 0 

 

Iteration - I

Table 8.7
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To obtain a basic feasible solution to the

deterministic capacitated transshipment

problem, we temporarily treat all x
ij
’s, except

the infeasible variable x
24

, as upper bounded

and apply the usual transportation routine to

minimize the sum of infeasible variable, i.e., to

minimize x
24

, till the infeasibility of x
24

 is removed.

The solution so obtained is:

x
11

 = 21, x
14

 = 8, x
15

 = 2,

x
22

 = 21, x
24

 = 4, x
25

 = 1,

x
33

 = 21, x
35

 = 6, x
44

 = 21,

x
55

 = 21

For the capacitated transshipment

problem x
24

 = 4 is non basic variable at its upper

bound.  Now in each column of the working

tables we assign values to y
hj
 variables to their

upper bounds (as far as possible).

We get y
11

 = 9, y
21

 = 3, y
12

 = 7 and

y
22

 = 2 
22

( ).R<

Step-2. The simplex multipliers and relative cost

coefficients are determined from equations

(7.1) and (7.2). These are also recorded in the

working Table (8.7).

Step-3. The values of Z are obtained using

equations (7.6): Z
1
 = 157 and Z

2
 = 44 and

finally 
1

2

157
3.56.

144

Z
Z

Z
= = =

Step 4.  For the non-basic variables, the

values of ij
∆  and 

hj∆

 are calculated and

found that 

14∆

 and 

24∆

 violets the optimality

criteria.

14∆

 = 6(44) – 2(157) = 264 –314 = -50  and

14∆

 = 4(44) – 2(157) =176 - 314 = -138

But 

24∆

 violates most severely, obviously

the current solution is not optimum and may

further improved.

Step-5.Adding 

θ

 to 

24
,y

 we are led to the

θ

-adjustments as shown in Table (8.7). The

maximum possible value of 

θ

 is 

* 1.θ =

After two iterations the optimal solution has

been attained as:

Z
opt

 = 3.64

x
11

 = 21, x
14

 = 7, x
15

 = 3,

x
22

 = 21, x
24

 = 4, x
25

 = 1,

x
33

 = 21, x
35

 = 6, x
44

 = 21,

x
55

 = 21
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