
11

Vol. VI No. 2 / October 2011
ISSN: 0973-4503 RNI : UPENG 2006/17831

AUTHOR

Abhishek Kumar Maheswari

Faculty of Computer Science

Venkteshwara Group of Institutions,

Meerut.

 <<<<<<<<<<<<<<<Abstract
In this article, we present a algorithmic method for the calculation of thresholds (the

starting point for a new state) for a software metric set. To this aim, machine learning and

data mining techniques are utilized. We define a data-driven methodology that can be

used for efficiency optimization of existing metric sets, for the simplification of complex

classification models, and for the calculation of thresholds for a metric set in an environment

where no metric set yet exists. The methodology is independent of the metric set and

therefore also independent of any language, paradigm or abstraction level. In four case

studies performed on large-scale open-source software metric sets for C functions, C+

 +, C# methods and Java classes are optimized and the methodology is validated.

1. INTRODUCTION

Software has become part of the everyday life. Embedded software in

modern cars controls the distance to the car in front of us. News portals on the

Internet utilize sophisticated distributed software to report the news events as they

occur. Users expect and need software to conform to a certain standard of

quality. The International Organization for Standardization (ISO) defines

quality as the “degree to which a set of inherent characteristics fulfills

requirements” in the ISO 9000 standard. To uphold the required standard of

quality, the assurance that software quality attributes are fulfilled is an important

aspect of the execution of software projects. Quality attributes like maintainability

and understandability are often assessed using software metrics. Software

metrics provide means to put numbers on abstract attributes, such as complexity

or size. Often, one metric is insufficient to effectively analyze a quality attribute.

Instead, we use a set of metrics to determine whether a quality attribute is fulfilled

or problematic. To determine if metric values are good or bad, clear indicators are

required. Otherwise such metric sets are hard to interpret. For this purpose, we

use thresholds for metric values: a quality attribute is said to be problematic, when

at least one threshold for a metric is violated. For thresholds to be effective

indicators, the quality of the threshold values themselves is of great importance.

However, the thresholds often depend on the project environment, e.g.,

programming languages and tool support. Therefore, the definition of thresholds is

often problematic and defined thresholds may not be valid in other environments.

During the last years, machine learning has been successfully applied and

Software Metrics: Calculation

and Optimization of Thresholds

Pp. 11-26

12

Vol. VI No. 2 / October 2011
ISSN: 0973-4503 RNI : UPENG 2006/17831

has become a standard technique for data analysis in

many different fields, such as gene analysis in

biology, or data mining techniques companies use to

optimize their marketing strategies. It has also been

used in computer science, e.g., for defect prediction.

In this article, we introduce an algorithmic approach

for the optimization of the size software metric sets

and threshold values used. To this aim, a machine

learning algorithm is used to define an approach for

the calculation of thresholds for a metric set. In a

previous work, we used relatively simple brute-force

approach for the calculation of threshold values for a

metric set for the Testing and Test Control

Notation (TTCN). However, such a brute force

approach has scalability problems and is therefore

infeasible for larger metric sets. This work presents a

more sophisticated approach, which utilizes the

learning of axis-aligned d-dimensional rectangles for

the threshold calculation. The objective of this work

is to reduce the complexity of metric-based

classifiers for software quality to improve their

understandability and interpretability, which will

benefit both researchers and the industry as it allows

pinpointing the source of deficits more effectively. To

this end, we provide a versatile, data-driven means

for both threshold calculation and the optimization of

metric sets integrated into a single algorithm.

The contribution of this article is fourfold.

1. A machine learning based method for the

computation of thresholds for metric sets.

2. A high-level methodology for the optimization of

already existing metric sets with thresholds.

3. Using the same methodology to effectively

replace existing classification methods, and

thereby reducing their complexity.

4. An outline how a good metric set with thresholds

can be determined in an environment where no

thresholds exist yet.

For the first contribution, we show how the

problem of rectangle-learning relates to sets of

software metrics with thresholds and how rectangle

learning can be utilized to compute thresholds. The

second contribution defines a generic methodology

for metric set efficiency optimization, which is in fact

not restricted to software metrics, but applicable to

metric sets in general. For this, we assume that an

effective metric set with thresholds already exists.

We show how a smaller and effective set can be

determined, which is due to its reduced size also

efficient. The third contribution shows how this

approach can be used to replace existing

classification strategies that may not even be metric-

based, with a threshold based classification. Such a

replacement can be used to substitute hard-to-

interpret or black-box classifiers with easy-to-

interpret threshold classification. Finally, we show

how our approach can be used to determine a good

metric set in an environment where no means for the

automated classification of software entities exists

yet. In comparison to the first contribution, this

includes not only the calculation of the threshold

values, but also the selection of an appropriate

subset of metrics from a possibly large set of

candidate metrics.

All methodologies defined in course of this

article are independent of the metric sets themselves

and only depend on actually observed data. The

methods are therefore independent of any specific

programming language (e.g., C, Java) and level of

abstraction (e.g., methods, classes). In four case

studies, we validated that the approach works well

for product metrics in large-scale open-source

software projects. As part of the case studies, metric

sets for C function, C+ + and C# methods, and

Java classes are analyzed.

The structure of this article is as follows. In

Section 2, we introduce the concepts of software

metrics and how they can be used in combination

with thresholds for quality estimation. Afterwards, we

briefly introduce machine learning and define the

foundations of the learning approach used in this

article in Section 3. In Section 4, we define the

methodology for the optimization of software metric

sets with thresholds and provide a description of

how it can be applied to perform different tasks is.

2. SOFTWARE METRICS

According to Fenton and Pfleeger,

“Measurement is the process by which numbers or

13

Vol. VI No. 2 / October 2011
ISSN: 0973-4503 RNI : UPENG 2006/17831

symbols are assigned to attributes of entities in

the real world in such a way as to describe them

according to clearly defined rules”. A way to

measure software is to use software metrics. The

IEEE defines software metrics as “the quantitative

measure of the degree to which a system,

component, or process possess a given attribute”.

This means that software metric is a clearly defined

rule that assigns values to software entities (e.g.,

components, classes, or methods) or attributes of

development processes.

Fenton and Pfleeger divided software

metrics into three categories: process metrics

measure attributes of a development process itself;

product metrics measure documents and software

artifacts that were produced as part of a process;

resource metrics measure the resources, which

were utilized as part of a process. Furthermore, each

metric measures either an internal or an external

attribute. Internal attributes are those that can be

measured by observing only the process, product or

resource itself, without considering its behavior.

External attributes on the other hand are attributes

that are related to the behavior of software systems.

In this work, the focus is on internal product metrics

that measure source code. Some examples for

internal attributes that relate to source code are size,

reuse, modularity, algorithmic complexity, coupling,

functionality, and control-flow structuredness.

Further attributes are staticness, method complexity,

or attributes that relate to object-oriented software,

such as usage of inheritance.

2.1 METRIC SETS UNDER STUDY

The methods described in this article are

general and may be used independent of a specific

metric set. However, as part of this article, metric

sets for the evaluation of the maintainability are

studied exemplary. This is done with two different

metric sets on different levels of abstraction: methods

and classes. The maintainability describes non-

functional aspects such as testability,

understandability, or changeability of software.

Because no single metric is able to cover all these

aspects, we employ a set of metrics that covers

internal attributes like the structure, size, and

complexity instead. We selected the metrics based

on our experience and with the aim to cover the

maintenance related aspects of the source code that

can be measured automatically with internal product

metrics.

For the analysis of methods and functions,

we use four metrics listed in Table 1. With the

control-flow structuredness measured by the

Cyclomatic Number (VG) and Nested Block

Depth (NBD), coupling measured by Number of

Function Calls (NFC), and size measured by

Number of Statements (NST), these metrics cover

most of the maintainability-related attributes of

methods, except the algorithmic complexity. Since

algorithmic complexity is not really an attribute of the

source code and cannot be measured automatically,

it has been omitted. While both VG and NBD

measure the control-flow structuredness, they

measure different aspects of this attribute: NBD

measures the maximum nesting of structural blocks,

while (VG) measures the overall branching between

blocks.

For the analysis of classes, the seven metrics

listed in Table 1b are used. With these metrics, five

internal attributes of classes are evaluated. The

metric Weighted Methods per Class (WMC)

measures the method complexity as the sum of the

metric VG measured for all methods in a class. The

metrics Coupling Between Objects (CBO) and

Response For a Class (RFC) measure the coupling.

For the measurement of the size of a class, the

metrics Number of Methods (NOM) and Lines of

Code (LOC) are utilized. The use of inheritance is

measured by Number of Overridden Methods

(NORM), the staticness of a class is measured by

the metric Number of Static Methods (NSM). We

included the attributes inheritance and staticness, as

they greatly influence the maintainability of classes

(Daly et al. 1996). Inheritance is often difficult to test

and also decreases the understandability of the

source code. Static methods and attributes can pose

problems, as they are global for all instances of a

class and can therefore introduce unwanted side

effects.

14

Vol. VI No. 2 / October 2011
ISSN: 0973-4503 RNI : UPENG 2006/17831

Table-1

Metrics used in this Research Paper

Metric name Internal attribute Description

(a) Metrics for methods and functions

Cyclomatic Number (VG) Control-flow structuredness Calculated based on the control flow graph G = (V,E) and

number of a method M as VG (M) = |E| “ |V| + p, where p is the

number of entries and exits.

Nested Block Depth Control-flow structuredness Maximum number of nested blocks in a method.

(NBD)

Number of Function Calls Coupling Number of functions called by a method

(NFC)

Number of Statements (NST) Size Number of statements of a method

(b) Metrics for classes

Weighted Methods per Class Method complexity Complexity of a class as the sum of the complexity of its methods.

(WMC) Here, VG is used as complexity measure.

Coupling Between Objects Coupling Number of classes, to which a class is coupled.

(CBO)

Response For a Class (RFC) Coupling Size of the response set of a class, i.e. all methods that can be

invoked directly or indirectly by calling a method of a class.

Number of Overridden Inheritance Number of methods defined by a parent that are overridden by

Methods (NORM) a class

Number of Methods (NOM) Size Number of methods of a class

Lines of Code (LOC) Size Lines of code, excluding empty and comment-only lines.

Number of Static Methods Staticness Number of static methods of a class

(NSM)

2.2 THRESHOLDS FOR SOFTWARE

METRICS

In general, thresholds discriminate values. In

case a threshold defines an upper bound, the values

that are greater than a threshold value are considered

to be problematic, the values lower are considered

to be acceptable. Thus, by defining thresholds a

simple analysis of measured values is possible. For

the interpretation of software metrics thresholds are

required. For example, consider a metric m that

measures the size of an entity x. Then a threshold t

can be used to determine if x is to large:

large toois x t m(x) ⇒>

While the above is an example of a threshold

used as an upper bound, it might as well be a lower

bound. For simplicity, we assume that thresholds are

always upper bounds. However, this is no restriction

as lower bounds can be transformed into upper

bounds. Let m a metric with threshold t that defines

a lower bound, i.e., entities x are considered to be

problematic if m(x) < t, which is equivalent to 1/

m(x) > 1/t if m(x) and t are non-negative, as metrics

and thresholds usually are. By defining a new metric

m2 (x) = 1/m(x) and a new threshold t2 = 1/t a new

metric with the opposite order is defined and with t2

a threshold is obtained that defines an upper bound.

However, by inverting the metric, its scale is hanged.

Another way to transform a lower bound into an

upper bound while keeping it to scale is to subtract

the metric from a maximum value. Let m
max

the

maximum value of metric m. Then

and a new metric m2 2 (x) = m
max

 “m(x)

and a new threshold t2 2=m
max

“t are obtained,

15

Vol. VI No. 2 / October 2011
ISSN: 0973-4503 RNI : UPENG 2006/17831

where t2 2 is an upper bound for m2 2 . However,

this method has the disadvantage that a maximum

value m
max

has to be known.

Thresholds are not without problems. The

first is the generality of threshold values. In general, a

threshold value is good in one setting must not

necessarily be good every setting. Depending on the

organization, the programming language, the tools

used the qualification of the developers, among other

factors that are project dependent, good threshold

values may vary. This is a problem, as each

organization, and maybe even each project, has to

define thresholds that are chosen depending on its

environment. This issue directly relates to a second

issue, as good thresholds depend on so many

factors, the definition of thresholds itself is a

problem. Therefore, a methodology to determine

environment specific thresholds is required.

To allow a more differentiated analysis more

than one threshold value for one metric can be

defined. In this article, we assume source code to be

either problematic or un-problematic. However,

further shades of gray exist in between. For example,

there may be two thresholds, a low one for weak

infractions and a higher one for critical

infractions.

3. FOUNDATIONS OF

MACHINE LEARNING

In this section, we introduce the concepts of

machine learning essential for this work. After a brief

description of machine learning in general, we define

the learning framework used in this work in

Section 3.1. Finally, we discuss an algorithm to learn

axis-aligned d-dimensional rectangles in Section 3.2.

The approach for the optimization of metric sets is

based on this algorithm.

In general, machine learning is a way to

analyze data. Learning theory assumes that observed

data can be described by an underlying process. The

type of the process varies and depends on the type

of learning. For example, it could be an automaton,

but also a stochastic process. The aim of machine

learning is to identify this process. Often, this is not

accurately possible. However, in most cases it is still

possible to detect patterns within the data. Assuming

that the underlying stochastic process does not

change, it is possible to predict properties of unseen

data using the detected patterns. A more detailed

introduction to machine learning in general can be

found in the literature.

3.1 CONCEPT LEARNING IN THE

PRESENCE OF NOISE

In this work, we use concept learning. A

concept defines how to divide vectors from the ”! d

into positive and negative examples. The task of a

learning algorithm is to infer a target concept g out

of a concept class - C.

The target concept can also be interpreted

as the Bayesian classifier of the concept. A concept

can also be understood as a map }1,0{X : g d → ,

where dd RX ⊂ denotes the input space. A learning

sample is of the form where

the input element X is randomly distributed

according to the sample distribution D defined over

the input space X, Y is the random label or output
element associated with X. In a noise free setting,

the value of Y depends only on the random vector X
and the target concept g and Y = g(X). To obtain

samples U, the concept of an oracle is used. On

request, an oracle EX (D, g) randomly draws an

input element X according to the distribution D,

classifies X using g and returns a sample U =

(X,g(X)). In practical applications, the oracle can be

seen as a training sample that contains classified

entities to be used for the learning.

Real-life applications are usually not noise-

free, i.e., the property Y=g(X) is not always fulfilled.

Most algorithms designed to work on noise-free

data often perform poorly or do not work at all in

the presence of noise. Therefore, noise modeling and

algorithms that use these models for learning in the

presence of noise are important. One way to

introduce noise into a learning model is the

classification noise model. In the classification noise

model, the label of the output variable Y is changed

with a fixed probability and Y = g(X) •” S, where •”

denotes the symmetric difference. The random
noise S “{0,1} is 1 with probability ç, i.e., ’!(S=1)

=ç, where ç denotes the noise rate. In the In the

16

Vol. VI No. 2 / October 2011
ISSN: 0973-4503 RNI : UPENG 2006/17831

classification noise model, S is independent of the

input element X. It follows directly that ’!(Y ‘“ g(X))=

ç. In combination with oracles, noise can be seen as

an attacker that corrupts the output element of a

sample generated by an oracle.

In the SQM proposed by Kearns query
functions of the form],[}1,0{: baxx d →× are used

to infer information about the data. For this purpose,

a statistical oracle is introduced that returns the

expected result of the queries within a specified

degree of precision. The estimation is based on noise

models.

We use a generalization of the classification

noise model, where the random noise rate is

orthogonal to the target concept. The restriction that

S is independent of the input element X is dropped.

Instead, we introduce a random noise rate ç(X)

that depends on the input element, as shown in

Fig . 1b. Hence, ç(x) =’!(S = 1|X = x) and thus the

random noise depends on the input. For a given
dXx ∈ , the noise rate is ç(x) = ’!(Y ‘“ g(X)|X=x)

and for y
0
 “ {0,1} the conditional expected noise

rate given g(X) =y
0
 is))(/)((: yoXgXnEn ==℘

Using the conditional expected noise rates ç

0
, ç

1
, and the expected noise rate can be calculated

as)1)((1)0)(()(: =+===℘ XgPnXgnoPXEnn

Furthermore, we assume that query functions

are admissible. A query function ÷ is admissible, if it

is not correlated to the noise rate ç(X) conditioned

on the concept g(X). The geometrical uncorrelation

is orthogonality, hence it is said that the noise is

orthogonal to the target concept. For the learning,

this means that it is not possible to infer the value of

÷ by simply considering the noise rate ç(X). This is a

reasonable assumption, as usually no information

about the result of a query is obtained by simply

considering the noise rate.

Based on the introduced concepts and

definitions, we can state the central theorem of the

learning framework. This theorem describes how the

expected value of an admissible query can be

calculated if the conditional expected noise rates ç
0

and ç
1
 are known.

3.2 A RECTANGLE LEARNING

ALGORITHM

In this work, we adapted the algorithm for

learning axis-aligned d-dimensional rectangles

proposed to the noise model described above. The

main adaptations are that the conditional expected

noise rates ç
0
 and ç

1
 have both to be sampled,

instead of only the expected noise rate ç.

Furthermore, the statistical oracle used by the

algorithm is changed from the SQM to the random

noise model by calculating the expected results of

statistical queries based on Theorem 1. The

algorithm has two phases. In the first phase, the

training data is partitioned according to its

distribution. In the second phase, the rectangle is

computed based on this partition. Both phases are

described in the following.

The aim of the first phase of the algorithm is

to find a partition of the d-dimensional real-space,

such that

for each dimension i =1,...,d and p,q =1,...,#1/å #

for X “ ”! d randomly distributed according to D,

where X
i
donates the i-th component of X and å an

error bound that the calculate hypothesis should

abide. This means that it is equally likely that the i-th
component of the randomly drawn vector X falls into

any of the intervals I
i,·
. In the implementation of the

algorithm, a sorting algorithm is utilized to obtain

these intervals according to the empirical distribution

ε
ε

≈=∈=∈
]/1[

1
)()(,, qiipii IXPIXP

Attacker

P(S=1)=n

Attacker

P(S=1)=n(x)

orithmAYXSxgYXgXOracleEX lg),()()(.(→−⊕=→−

17

Vol. VI No. 2 / October 2011
ISSN: 0973-4503 RNI : UPENG 2006/17831

of a discrete training sample. After sorting the values

for the i-th dimension, the intervals I
i,p

can be

defined by assigning the first
]/1[ε

P
 vectors to I

i,1
, the

next
]/1[ε

P
 to I

i,2
 and so on. These intervals fulfill the

property defined by (3.6). If there are n samples in a

training set, the complexity of the first phase is O(d n

logn), as for each dimension the samples have to be

sorted and efficient sorting algorithms are O(n logn).

In the second phase, the boundaries of the

target rectangle are calculated. For each dimension

separately, the probability)1)(/(,, =∈= XgIXPPI piipi ,

i.e., the probability that the target rectangle intersects

an interval I
i,p

is calculated. This probability is

calculated using admissible queries and (3.5). If the

target rectangle intersects an interval, the probability

piPI , should be significantly larger than 0. Thus, for

each dimension i, the probabilities piPI , are

calculated from the left, i.e., p= 1,2,.... The first

interval, for which is significant defines the left, i.e.,

lower boundary l
i
of the rectangle in the i-th

dimension. The same is done from the right, i.e., p =

#1/å #,#1/å # “1, ... to determine the right, i.e.,

upper boundary u
i
. Using this procedure for each

dimension, boundaries (l
i
,u

i
) are calculated.

In the second phase, for each dimension, the

probability piPI , is calculated for at most #1/å #

intervals from the left and analogously from the right.

The estimation of this probability is O(n). Thus the

complexity of the second phase is

ε

1
dnO and the

overall complexity of the algorithm is)
1

log(
ε

dnndnO +

4. OPTIMIZATION OF METRIC SETS

AND THRESHOLDS

In this section, we introduce our machine

learning based approach to optimize metric sets with

thresholds for the detection of problematic entities.

First, we describe in Section 4.1 how the rectangle

learning algorithm is utilized to calculate thresholds.

Based on that, we define a threshold optimization

algorithm for the calculation of an optimized metric

set with thresholds. Then we show three applications

for this threshold optimization algorithm:

1) Optimization of an existing metric set with

thresholds to obtain an effective and efficient

subset;

2) Reduction of the complexity of the used

classification method;

3) Determination of environment specific

thresholds.

 4.1 CALCULATION OF THRESHOLDS

USING RECTANGLE LEARNING

The analysis approach is based on a given

metric set M = {m
1
, ..., m

d
} and a set of software

entities X with known classifications Y. The aim is to

obtain thresholds T = {t
1
, ..., t

d
} for the metrics in

M such that the metric set can be used to

discriminate software entities in the same way, as it is

done by the pair (X,Y). By measuring the software

entities X with M, we transform the set of software

entities X into a set of vectors in the d-dimensional

real space, such d

d RXxxmxmXM ⊂∈= }:))(),...,({(:)(1

The pair (M(X),Y) is the input for the axis-

aligned rectangle learning algorithm, introduced in

Section 3.2. As result, the algorithm yields pairs of

upper and lower bounds (l
i
,u

i
) for each dimension

i = 1,...,d. As the i-th dimension represents the

values the software entities calculated using the

metric m
i
and under the assumption that high metric

values are bad, we interpret the upper bound of the

rectangle in the i-th dimension as the threshold for

the metric m
i
. Therefore, with t

i
=u

i
a set of

thresholds T={t
1
, ..., t

d
} for the metric set M is

obtained. For an entity x, the classification of the

Treturn

td};,…ti,T

d;,…1,=i allfor ht

);,...,1),l,(uobtain and Y)(M(X), toalgorithm learning rectangle Apply the

X};x:md(x)),…{((m1(x),M(X)

td}{t1,..., = T s threshold:Output

md}{m1,...,=Mset metric Y, tionsclassifica with X entities software ofSet :Input

s thresholdofn calculatio for the Algorithm :1 Algorithm

ii

ii

←

←

=

∈←

di

metric set M and the thresholds T is defined as

>>∈

=>∈
=

,0/})(:},...,1{{0

0/})(:},...,1{{1
),,(

ii

ii

txmdiif

txmdiif
TMxfo

i.e., f
0
(x,M,T) is zero when at least one metric m

i

exceeds its threshold t
i
, and is one when none of

the metrics exceeds its threshold.

Under the assumption that metric values are

positive, this classification describes a rectangle with

upper bounds t
i
and 0 as the lower bound.

18

Vol. VI No. 2 / October 2011
ISSN: 0973-4503 RNI : UPENG 2006/17831

The classification error is defined as the

probability that a randomly drawn sample (X,Y) is

classified wrongly),),,((YTMXfoP ≠=ε

Consequently, the empirical classification error on

a given training sample (X,Y) is defined as

4.2 THRESHOLD AND METRIC SET

OPTIMIZATION ALGORITHM

Next, we define a threshold optimization

algorithm that computes an optimized metric set

based on the calculation of thresholds for a metric

set. This means a metric set that is not only effective

with respect to the classification it yields, but also

efficient in terms of its size. To achieve this, we

reduce the dimension of the metric set and

recalculate the threshold values for the reduced sets.

Recalculating the thresholds allows the algorithm to,

e.g., enforce a stronger classification using one

metric while dropping another from the set.

The algorithm uses an existing method f for

the classification of software entities X. By applying f

to the entities x “X, the classification Y can be

calculated as Y ={f(x): x “ X}. The resulting pair

(X,Y) is the basis for the calculation of thresholds.

Let M be a metric set to be used as basis for

the determination of an optimized, i.e., effective and

efficient metric set with thresholds. A metric set is

called effective if its classification error is close to 0,

i.e., less than or equal to a threshold for the error ä

 “ ”!. A metric set is called efficient if it is the smallest

set to do so. Therefore, we need to calculate a

subset with thresholds

T2={t2
1
, ..., t2

 d2
} that yields classification error

smaller than ä. To this aim, we determine thresholds

based on the training set (X,Y) for all subsets of M.

In other words, all sets that are element of the power

set of M: . Then, for each subset M2

the empirical classification error å
X,Y

is calculated.

The smallest set M2 that has a classification error å

X,Y
 d” ä is an effective and efficient subset of M.

Algorithm 2 describes the whole threshold

optimization algorithm in a step-wise fashion. We

discuss the run time and scalability of the algorithm.

The value ä can be used as a steering

parameter, depending on the accuracy expected of

the optimized set and the available data. The higher

the accuracy shall be and the more data is available,

the smaller ä should be. It is possible that no M2 ,

T2 satisfies the condition that its error is below ä. In

this case, there are three options to proceed: 1)

choose a larger value for ä; 2) use a different metric

set M; 3) abort the optimization efforts and conclude

that a metric set M2 with threshold T2 is insufficient

to describe the classification. As a practical matter, ä

can be sampled, e.g., by starting with ä = 0.01 and

increasing it in 0.01 steps till a metric set found.

4.3 OPTIMIZATION OF THE

EFFICIENCY OF METRIC SETS

WITH THRESHOLDS

Given an existing effective metric set, the

threshold optimization algorithm can determine an

effective and efficient subset. Let M be a metric set

T*; ingcorrespond theand *Mreturn

};)T' ,y(M'x, : P(M){M'minM*

1 Algorithm with Y X, ,M'for T1 s thresholdCalculate

 P(M)Mforeach

X};x:{f(x)Y

 *T sholds with thre*Mset metricefficient and Effective :Output

 sholderror thre M,set metric X, entities software ofset f, methodtion classifica Effective :Input

onoptimizatiset metricfor on optimizati thresholdThe :2 Algorithm

1

δε

δ

≤∈←

∈

∈←

end

do

19

Vol. VI No. 2 / October 2011
ISSN: 0973-4503 RNI : UPENG 2006/17831

with thresholds T and X a set of software entities.

The function f
0
(x,M,T) defines a classification

method for X. Then, f
0
, X, M, and an appropriate

value for ä are the input for the threshold

optimization algorithm which will compute an

optimized subset M * with thresholds T *.1 As an

example, the classification obtained by two metrics is

approximated by only one of the two metrics. The

dashed lines visualize the thresholds of the two

metrics, used to classify the samples for the training.

4.4 REDUCTION OF THE

CLASSIFICATION COMPLEXITY

Another way to utilize the threshold

optimization algorithm is to reduce the complexity of

the classification scheme. With thresholds, a simple

kind of classification is described: if a threshold is

violated, an entity is problematic. This makes it clear

why an entity is problematic and also provides an

indicator what the problem might be. A slightly more

complex approach is to allow a number of infractions

ë, i.e., ë thresholds may be violated. The function

describes the classification defined by a

metric set M with thresholds T. With ë = 0, this f
ë
is

equal to f
0
 4.1, hence f

ë
is a generalization of f

0
.

One reason to use such a rule is to grant the

developers more freedom, e.g., allowing short

methods with a high structural complexity or long

methods with a low structural complexity. But

methods that are both long and structurally complex

are forbidden. The classification with ë allowed

infractions introduces an additional complexity to

understand why a problematic entity was classified

as such and which counter measures can be taken.

Complex approaches that may yield a very good

classification may be difficult to impossible to

interpret, e.g., SVM based techniques. Other

techniques, e.g., classification trees show directly

why an entity was classified as problematic, but it not

clear how to fix as the tree may hide other reasons

why the entity is problematic. In general, the

classification could be performed by an arbitrary

complex function f. A metric set that yields the same

classification, with no infractions whatsoever allowed

is preferable, because as Occam ’s razor suggests,

the simplest solution is preferable.

4.5 LEARNING OF ENVIRONMENT

SPECIFIC THRESHOLDS

An important aspect of thresholds for

metrics is that they are often dependent on the

properties of the project environment such as the

requirements, the developer qualification or the

programming language. Therefore, the best results

are achieved with thresholds tailored to the specific

environment. In the previous two sections, we have

only shown how the threshold optimization algorithm

can optimize already existing classification methods.

However, the algorithm is also able to determine

thresholds where currently no method of

classification exists. For this, an expert has to select

a set of software entities X that are typical for the

project environment. Afterwards, the expert

manually classifies them into good and bad based on

his or her expertise. As basis for this, the expert may

use intricate knowledge, but also information about

the software, e.g., the fault history to identify which

sections are probably problematic. This is the

traditional approach to determine the quality of

software, without metric sets and thresholds. Using

the thus obtained knowledge, we can determine a

metric set with environment specific thresholds that

mimics the expert’s knowledge. To conform to our

nomenclature, the expert can be seen as a function f
that classifies software. Then, given a metric set M,

the threshold optimization algorithm is able to

determine an effective, efficient, and environment

specific metric set M * with thresholds T * that

emulates the expert’s knowledge.

5. CASE STUDIES

For the validation of the approach for the

optimization of metric sets, we performed four case

studies consisting of a total of nine experiments. After

we describe the general methodology used to

perform the case studies, we present the results of

the case studies. The case studies were designed to

answer the following research questions:

R1: Is the method to optimize the efficiency of

metric sets effective?

≤>∈

≤>∈
=

,/})(:},...,1{/{0

/})(:},...,1{/{1
),,(

λ

λ
λ

ii

ii

txmniif

txmniif
TMzf

20

Vol. VI No. 2 / October 2011
ISSN: 0973-4503 RNI : UPENG 2006/17831

R2: Is the method to reduce classification complexity

effective?

R3: Are the methods applicable and effective to

different levels of abstraction (e.g., methods,

classes, packages) and programming languages?

R4: Is threshold recalculation with the rectangle

learning algorithm necessary or is it sufficient to

reuse known thresholds?

R5: Is the exponential nature of the approach a

threat to its scalability?

We answer these questions with respect to

the case study results in Section 6.1.

5.1 METHODOLOGY

The case studies are based on metric data

mined from archives of large scale open source

software projects. By measuring code checked out

from source code repositories, we obtained sets of

software entities X with metric values M(X). To

guarantee the validity of the results, the measured

data is randomly split into three disjunctive sets: a

training set (X
train

,Y
train

) that contains 50% of the

data; a selection set (X
sel

,Y
sel

) that contains 25%

of the data; an evaluation set (X
eval

,Y
eval

) that

contains 25% of the data. Each of the three sets is

used at a different stage of our learning approach.

The training set is used to calculate a set of

hypotheses h
p,q

for sampled noise rates ç
0,p

, ç
1,q

using the rectangle learning algorithm. The selection

set is used to select the best of these hypotheses,

i.e., an optimal hypothesis h * with respect to the

empirical classification error ,, celcel YXε
. The

evaluation set is used to calculate the empirical

classification error ,, cvalcval YXε
of h * on data that has

not been part of the learning process. The error

threshold ä for the threshold optimization algorithm is

gradually increased in steps of 0.005 until a set is

found that abides the threshold.

To further evaluate the case study results, we

employ two additional measures for the quality of a

hypothesis. The first is the MCC, a measure for the

quality of binary classifications often used in machine

learning (Matthews 1975). It is based on the so

called confusion matrix. In the confusion matrix, a

hypothesis is compared to the actual values

separately for positive and negative samples by

counting true positive (tp), true negative (tn), false

positive (fp), and false negative (fn) classified

samples. In Fig. 4, the structure of the confusion

matrix is visualized. The MCC is defined as

))()()((

..

fntntptnfntpfptp

fnfptntp
MCC

++++

−
=

Its value is distributed between “1 and 1,

whereas 1 represents a perfect prediction, “1 an

inverse prediction, and 0 a random prediction. In

contrast to the classification error, the MCC

provides a balance between fp and fn predictions.

Thus, MCC is more sensitive if the hypothesis has a

bias towards rather falsely classifying positive

samples than negative ones and vice versa.

Fig. Confusion matrix

Actual classification

Positive Negative

false positive (fp)true positive (tp)

false negative (fn) true negative (tn)

N
e
g
a
ti
v
e

P
o
s
it
iv

eH
y
p

o
th

e
s
is

The second is the F-Score, another measure for the

quality of hypothesis based on the confusion matrix.

It is based on the precision and recall of a

hypothesis. The precision measures how many of the

positive predicted values of a hypothesis are actually

positives. The recall is a measure for how many of

the actual positive values are predicted correctly.

They are defined as follows:

fntp

tp
recall

fptp

tp
precision

+
=

+
=

(5.2)

The F-score is then defined as harmonic

mean between prediction and recall:

recallprecision

recallprecision
scoreF

+
=−

,
(5.3)

Its value is distributed between 0 and 1, with

1 being a perfect score and zero being the worst.

21

Vol. VI No. 2 / October 2011
ISSN: 0973-4503 RNI : UPENG 2006/17831

5.2 CASE STUDY 1:

Optimization of Metric Sets for Methods : In the

first case study, we analyzed the methodology for the

optimization of metric sets for methods and

functions. For this purpose, we measured software

from various domains implemented in the languages

C, C+ +, and C#. Hereafter, we use the terms

method and function interchangeably.

For C, we measured the Apache HTTP

Server, an open source HTTP server for Unix/Linux

and Windows systems developed and maintained by

the Apache Foundation.We measured C+ +

methods for two of the main components of the K

Desktop Environment (KDE) for Linux, the

kdebase and the kdelibs components. The kdebase

component contains most of the core applications of

KDE, e.g., the window manager, an X terminal

emulator, and the file manager Dolphin. The kdelibs

provide a library of important core functions that are

used by KDE, e.g., for networking, printing, and

multi-threading. For C#, we measured three

projects. The first C# project measured is

AspectDNG,5 an aspect weaver that enables Aspect

Oriented Programming (Kiczales et al. 2002) in

C#. The second is the NetTopologySuite,6 a

Geographic Information System (GIS) solution for

the .NET platform. Finally, we measured

SharpDevelop,7 an Integrated Development

Environment (IDE) for C#, VB.NET, and Boo.

Following table gives further information about the
Table-2

Statistical information about the measured projects

Project name Version Language Number of methods

Total Problematic

(a) Projects used for method-level analysis

 Apache Webserver 2.2.10 C 6718 1995

 Kdebase 12/05/2008 C+ + 21404 4161

 Kdelibs 12/05/2008 C+ + 37444 4921

 AspectDNG 1.0.3 C# 2759 232

 NetTopologieSuite 1.7.1.RC1 C# 3059 317

 SharpDevelop 2.2.1.2648 C# 15700 1950

Project name Version Language Number of classes

Total Problematic

(b) Projects used for class-level analysis

 Eclipse java development tools 3.2 Java 4833 3349

 Eclipse platform project 3.2 Java 5399 3517

analyzed versions, as well as the size of the projects.

5.3 CASE STUDY 2:

Optimization of Metric Sets for Classes:

In the second case study, we analyzed the

optimization of metric sets for Java classes. The

basis for this case study are two large-scale open

source projects, both run by the Eclipse

Foundation:8 the Eclipse Platform9 and the Eclipse

Java Development Tools (JDT).10 The Eclipse

Platform Project defines the main components of the

Eclipse Platform, like the handling of resources, the

workbench, and the editor framework. For the

analysis, we excluded the test code and the

Standard Widget Toolkit (SWT), a framework for

user-interface programming. The rational being, that

test code is inherently different from product code

and thus test classes should not be compared to

other classes. For example, test-cases can be highly

repetitive as lists of values have to be compared to

expected values, leading to a large size of test

classes. On the other hand, the structure of test code

should be less complex to prevent errors in the test

code itself. The thresholds of the related metrics, like

LOC and WMC should therefore be different than

for normal code. As for the SWT, while it is formally

a part of the Eclipse Platform Project, it is mainly

independent. The Eclipse JDT implements an IDE

for Java development on top of the Eclipse Platform.

Again, we excluded the test code from the analysis.

22

Vol. VI No. 2 / October 2011
ISSN: 0973-4503 RNI : UPENG 2006/17831

The metric set under study was M =
{WMC, CBO, RFC, NORM, LOC, NOM, NSM}
with thresholds as defined in Table 2b in the same
manner as in case study 1. The metrics DIT and
NOC were initially also part of this set, but we had
to exclude them beforehand due to their poor
distribution. As for DIT, ~98% of the classes had
an inheritance depth of 0 or 1. With the metric
NORM another inheritance related measure is still
part of the metric set, thus DIT can be excluded

Table-3

Statistical information about the measured Java classes

Metric Median Arithmetic Max Threshold

mean value

WMC 12 27.48 2138 100

CBO 8 13.40 212 5

RFC 20 35.21 675 100

NORM 0 0.96 166 3

LOC 24 82.95 6619 500

NOM 6 10.79 418 20

NSM 0 0.81 128 4

without reducing the internal attributes measured.
The distribution of NORM is not ideal either, with
only ~83% of all values greater than or equal to 2.
However, this is still better than the distribution of
DIT. The same argument is used to exclude NOC,
where ~91% are 0 or 1.

The optimization yielded the set M * ={CBO,
NORM, NSM}, with thresholds t

CBO
 = 5, t

NOM
 =

 3 and t
NSM

 = 4. Similar to case study 1, the
calculated threshold values are the same as the ones
used for the classification. The empirical error of this
set is 0.27%. The MCC and F-score reveal no
weaknesses either, both have values above 0.99.
Therefore, by using the set M * of size |M *| = 3
instead of M of size |M| = 7, the size of the metric
set is reduced by 57% without loss of generality. The
following Table depicts detailed results and statistical
information about the metrics.

5.4 CASE STUDY 3:

Reduction of the Classification Complexity for

Methods : We performed this case study on the

same data as case study 1 (see Section 5.2). The

case study is designed to test the capability of the

threshold optimization algorithm to reduce the

classification complexity. To this aim, we calculated

the classification Y for the training using the metric set

M = {VG, NBD, NFC, NST}, thresholds T as

defined in Table 2a, and f
1
(·,M,T) (see (4.4)) to

calculate the classification. Thus, an entity is only

considered problematic if the threshold of more than

one metric is violated.

In contrast to case study 1, the result is

different for the various languages. In case of C, the

metric NST with a threshold of t
NST, C

= 5 yields the

best result with an empirical error of 0.84%. For C+

 + and C#, the metric VG with thresholds t
VG, C +

 = 10 and t
VG, C#

 = 9 performs best with an

empirical error of 0.87%, respectively 1.36%. The

calculated threshold value in the C# experiment is

different to the one used in the initial classification,

while remains the same in the C and C+ +

experiments. The MCC revealed no weakness for

the C and C+ + experiments. However, in the C#

experiment, the MCC dropped to 0.7598. While this

is still a very good value, it indicates a possible

weakness of this result. The F-score revealed no

such weakness and was above 0.9930 for all three

languages. Thus, we were able to use a simpler

classification methodology, while also reducing the

size of the metric set by 75% for all three languages.

Table 6c summarizes the results of this case study.

5.5 CASE STUDY 4:

Reduction of the Classification Complexity for

Classes : We performed the fourth case study on

the same data as case study 2 (see Section 5.3).

Like case study 3, it is designed to test the capability

to reduce classification complexity. The methodology

is similar to the one used in case study 3. Again, we

use f
ë
instead of f

0
 for the classification of software

entities. Here, we use ë = 1,2, i.e., we

perform two experiments:

1) one threshold violation allowed;

2) two threshold violations allowed.

Allowing more infractions would render the

metric set ineffective, as more than half of the

thresholds would have to be violated to even classify

a class as problematic.

In both experiments, we determined effective

and efficient metric sets. In the first experiment, with

23

Vol. VI No. 2 / October 2011
ISSN: 0973-4503 RNI : UPENG 2006/17831

one violation allowed, the metric set M * =

 {RFC, NORM, NOM, NSM} with thresholds t
RFC,1

 = 98, t
NORM,

 = 3, t
NOM,1

= 20, and t
NSM,1

 = 4

performed best with an empirical error of 1.71%. In

the second experiment, the metric set {WMC, RFC}

with thresholds t
WMC,2

 = 99 and t
RFC,2

 = 97 was

effective and efficient with a classification error of

2.21%. Half of the threshold values calculated in this

case study deviated from the ones used for the

classification. While the empirical error of the

experiment with ë = 1 was higher than with ë =

 2, the MCC performed the other way around.

While the MCC of the experiment with ë = 1 is

unproblematic with 0.9449, it drops slightly for ë =

 2 to 0.8494. This suggest, that the hypothesis in the

second experiment has a slight bias towards positive

samples, as the F-score revealed no such weakness.

It is above 0.98 for both experiments. The results

show that a simpler classification can be used in both

cases and, furthermore, the metric set sizes can be

reduced by 42% and 71%, respecitvely. Table 6d

summarizes the results of this case study.

6. DISCUSSION

In this section, we discuss the research

questions R1–R5 with respect to the case study

results. Afterwards, we discuss other methods for

metric set optimization and compare them to our

methodology.

6.1 DISCUSSION OF RESEARCH

QUESTIONS

R1: Is the method to optimize the efficiency of

metric sets effective?

The results of the three experiments of case

study 1 and the experiment performed in case study

2 show that the methodology is capable of

decreasing the size of metric sets between 57% and

75% without a significant loss of classification

precision. Based on these four successful

experiments, each of them performed in a different

environment, the answer to this research question is

yes.

R2: Is the method to reduce classification

complexity effective?

In case studies 3 and 4 we classified the data

with a method more complex than the simple

threshold classification. A total of five experiments

were performed, in all of which simple thresholds

were sufficient to reproduce the original

classification. Furthermore, the resulting metric sets

were also 42% to 85% smaller than the ones used

for the classification. Thus, the answer to this

research question is yes.

R3: Are the methods applicable and effective to
different levels of abstraction (e.g., methods,
classes, packages) and programming
languages?

In the case studies 1 and 3, we analyzed

methods and functions, while classes were under

consideration in case studies 2 and 4. Thus, the

approach does not depend on the level of

abstraction. Furthermore, in the case studies, we

used projects written in four different programming

languages: C, C+ +, C# and Java. These four

languages cover the procedural and the object-

oriented paradigm. Moreover, C is a low-level and

close to the system programming language, whereas

Java and C# are relatively high level. Therefore, the

results indicate that the programming language has no

impact on the capabilities of the methodology and

the answer to this question is yes.

R4: Is threshold recalculation with the rectangle
learning algorithm necessary or is it sufficient to
reuse known thresholds?

On one hand, the results of case studies 1

and 2 suggest that recalculation of threshold values is

not required when optimizing a metric set. In all

experiments conducted, the calculated threshold

values were the same as the original ones. On the

other hand, the results of case study 3 and 4 suggest

that when the classification method is changed,

recalculation of threshold values is beneficial even if

the formerly used method is based on thresholds. In

addition to the problems analyzed in the case studies,

there are possible applications where no thresholds

are available, e.g., if a non-threshold based

classification method is to be optimized. In such

cases threshold calculation is integral and may not be

omitted. In conclusion, whether the recalculation of

24

Vol. VI No. 2 / October 2011
ISSN: 0973-4503 RNI : UPENG 2006/17831

threshold adds value to the proposed method

depends on the application of the method.

R5: Is the exponential nature of the approach a
threat to its scalability?

The execution of all nine experiments

performed as part of the four case studies took 139

seconds in total on a normal desktop workstation

running on an Intel Core2 Duo E8400 processor.

For these experiments, the rectangle learning

algorithm was executed a total of 480 times,

therefore, a single execution took about 0.29

seconds in average. As there are 220 different subsets

of a metric set of size 20, the execution would take

220 ·0.29 H” 304.000 seconds, thus, approximately

3.5 days. While this is a pretty long time, it has to be

taken into account that such an optimization must

only be performed once and does not need to run

regularly. Furthermore, run time can be reduced by

using multiple parallel threads of execution. Of

course, with even greater metric sets, this does not

resolve the problem. In conclusion, it can be said

that the approach is able to handle metric sets with a

size of about 20 in an acceptable amount of time.

For larger metric sets, a heuristic for the selection of

subsets to be analyzed needs to be employed.

6.2 LIMITATIONS

We only analyzed open source software in

the case studies; non-open-source software has not

been analyzed. However, the work by Werner

showed that a similar approach worked with TTCN-

3 test suites, i.e., software written in a Domain
Specific Language (DSL) in a non-open-source

environment.

The metric sets we analyzed only consist of

internal product metrics on the method and class

level. Metric sets on higher levels of abstraction, as

well as metric sets including process or resource

metrics have not been analyzed. Furthermore, the

chosen threshold values may have been inadequate

to begin with, leading to misclassified training data.

The proposed methodology produces a

binary classification and can therefore only

differentiate between “good” and “bad”, further

shades of grey are not possible.

7. RELATED WORK

Research on how environment specific

metric sets can be obtained was performed by Basili

and Selby. In contrast to this work, the authors use a

Goal/Question/Metric (GQM) approach to

determine a metric set and condense it using factor

analysis. A statistical method to obtain threshold

values was introduced by French who used it to

derive thresholds for object-oriented and procedural

software.

An approach to determine classification trees

to identify quality critical modules was proposed by

Porter and Selby. The tree makes its decisions based

on intervals of metric values, which is similar to using

thresholds.

A methodology to determine metric sets to

predict quality critical modules using Boolean

Discriminant Functions (BDFs) has been introduced

by Schneidewind. The BDFs consist of boolean

disjunctions of threshold violations to identify critical

modules, which is just another formalization of the

classification model used in this work. They

determine the thresholds using Kolmogorov–Smirnov

tests. This model is extended to Generalized BDFs

by introducing conjunctions into the Boolean

functions.

Use environment specific thresholds to

determine whether metric values are low, average, or

high, based on the arithmetic mean and the standard

deviation of observed metric data. These thresholds

are then used in an overview pyramid to provide an

overview of object-oriented software based. The

metrics are divided into three aspects: inheritance;

size and complexity; coupling. Using the thresholds, a

coloring scheme is defined that visualizes the

software properties. In comparison to this work, the

authors do not assume thresholds to define metric

values as problematic, but rather use them to

discriminate metric values into low, average, and high

values.

An instantiation of the maintainability

characteristic of the ISO 9126 quality model (ISO/

IEC 2001–2004) is described by Heitlager. They

use both internal and external product metrics to

define ratings for the source code properties

25

Vol. VI No. 2 / October 2011
ISSN: 0973-4503 RNI : UPENG 2006/17831

volume, complexity per unit, duplication, unit
size, and unit testing. Based on the property

ratings, the sub-characteristics of maintainability are

rated from which maintainability is inferred. The

ratings are based on intervals, which are similar to

using thresholds. In comparison to our work, they

have five rating classes instead of a binary

classification. Furthermore, very good ratings for one

property allow bad ratings for another, which is

different to the strict threshold classification we

apply.

A paper similar to this work, but using a less

sophisticated approach for the optimization of metric

sets for TTCN-3 is presented by Werner. However,

the machine learning methodology used in this work

is more mature and the case studies analyze it in a

wider setting, i.e. various programming languages

and levels of abstraction.

8. CONCLUSION

We defined a novel high-level approach for

the calculation of thresholds for software metrics to

evaluate quality attributes. The method is purely data

driven and utilizes machine learning techniques.

Based on this, we defined a methodology to

determine optimized metric sets that replicate a given

classification of a quality attribute. We outlined how

the methodology can be applied to improve the

efficiency of existing metric sets with thresholds,

reduce the complexity of a used classifier and how a

new metric set can be introduced using the

methodology. In two case studies, we showed that

the methodology is able to greatly improve the

efficiency of existing metric sets. In two further case

studies, we reproduced complex classifications

successfully with simple thresholds.

Future projects may include more case

studies, on how well the approach works in other

environments, e.g., domain specific languages or

how well it handles sparse data. Moreover, it may be

investigated how learning of Disjunctive Normal
Forms (DNFs) of thresholds instead of conjunctions

affects the hypothesis quality, the metric set

reduction, and the interpretability of the resulting

classifiers. Furthermore, a detailed comparison with

black-box classification techniques like Artificial
Neural Networks (ANNs) or SVMs is an

interesting topic for the future. Another research

direction is to determine metric sets and thresholds

that can be used to steer software project decisions.

To this aim, the approach needs to be adapted for

process data.

REFERENCES

1. Angluin D, Laird P (1988) Learning from noisy examples. Mach Learn 2(4):343–370. doi:10.1023/A:1022873112823

2. Basili V, Rombach H (1988) The TAME project: towards improvement-oriented software environments. IEEE Trans

Softw Eng 14(6):758–773

3. Basili V, Weiss D (1984) A methodology for collecting valid software engineering data. IEEE Trans Softw Eng 10(6):728–

738

4. Basili VR, Selby RW Jr (1985) Calculation and use of an environment’s characteristic software metric set. In: ICSE ’85:

proceedings of the 8th international conference on Software engineering. IEEE Computer Society Press, Los Alamitos,

CA, USA, pp 386–391

5. Basili VR, Briand LC, Melo WL (1996) A validation of object-oriented design metrics as quality indicators. IEEE Trans

Softw Eng 22(10):751–761. doi:10.1109/32.544352

6. Benlarbi S, Emam KE, Goel N, Rai S (2000) Thresholds for object-oriented measures. In: ISSRE ’00: proceedings of the

11th international symposium on software reliability engineering. IEEE Computer Society, Washington, DC, USA, p 24

7. Brodag T, Herbold S, Waack S (2010) A generalized model of pac learning and its applicability. Mach Learn (manuscript

in revision)

8. Chidamber SR, Kemerer CF (1994) A metrics suite for object oriented design. IEEE Trans Softw Eng 20(6):476–493.

doi:10.1109/32.295895

9. Daly J, Brooks A, Miller J, Roper M, Wood M (1996) Evaluating inheritance depth on the maintainability of object-

oriented software. Empir Softw Eng 1(2):109–132

10. Devroye L, Györfi L, Lugosi G (1997) A probabilistic theory of pattern recognition. Springer, New York

11. Duda R, Hart P (1973) Pattern classification and scene analysis ETSI (2007) ETSI Standard (ES) 201 873-1 V3.2.1

(2007-02): the testing and test control notation version 3; part 1: TTCN-3 core language. European Telecommunications

Standards Institute (ETSI), Sophia-Antipolis, France, also published as ITU-T Recommendation Z.140

26

Vol. VI No. 2 / October 2011
ISSN: 0973-4503 RNI : UPENG 2006/17831

13. Fenton N, Pfleeger S (1997) Software metrics: a rigorous and practical approach. PWS Publishing Co. Boston, MA,

USA.

14. French V (1999) Establishing software metric thresholds. In: International workshop on software measurement (IWSM99)

15. Grabowski J, Hogrefe D, Réthy G, Schieferdecker I, Wiles A, Willcock C (2003) An introduction to the testing and test

control notation (ttcn-3). Comput Netw 42(3):375–403. doi:10.1016/S1389-1286(03)00249-4

16. Heitlager I, Kuipers T, Visser J (2007) A practical model for measuring maintainability. In: 6th international Conference

on the Quality of information and communications technology, 2007. QUATIC 2007, pp 30–39. doi:10.1109/

QUATIC.2007.8 IEEE (1990) Ieee glossary of software engineering terminology. ieee standard 610.12. Tech. rep., IEEE

17. ISO/IEC (2001–2004) ISO/IEC standard no. 9126: software engineering—product quality; parts 1–4. International

Organization for Standardization (ISO) / International Electrotechnical Commission (IEC), Geneva, Switzerland ISO/

IEC (2005) ISO/IEC Standard No. 9000. International Organization for Standardization (ISO) / International

Electrotechnical Commission (IEC), Geneva, Switzerland

18. Kearns M (1998) Efficient noise-tolerant learning from statistical queries. J ACM 45(6):983–1006. doi:10.1145/

293347.293351

19. Khoshgoftaar TM (2002) Improving usefulness of software quality classification models based on boolean discriminant

functions. In: ISSRE ’02: proceedings of the 13th international symposium on software reliability engineering. IEEE

Computer Society, Washington, DC, USA, p 221

20. Kiczales G, Lamping J, Lopes C, Hugunin J, Hilsdale E, Boyapati C (2002) Aspect-oriented programming. US Patent

6,467,086

21. Lanza M, Marinescu R, Ducasse S (2005) Object-oriented metrics in practice. Springer-Verlag New York, Inc., Secaucus,

NJ, USA

22. Lilliefors HW (1967) On the Kolmogorov–Smirnov test for normality with mean and variance unknown. J Am Stat Assoc

62(318):399–402. http://www.jstor.org/stable/2283970

23. Lorenz M, Kidd J (1994) Object-oriented software metrics: a practical guide. Prentice Hall PTR

24. MacKay DJ (2003) Information theory, inference, and learning algorithms. Cambridge University Press

25. Mammen E, Tsybakov AB (1999) Smooth discrimination analysis. Ann Stat 27(6):1808–1829

26. Matthews BW (1975) Comparison of the predicted and observed secondary structure of t4 phage lysozyme. Biochim

Biophys Acta, Protein Struct 405(2):442–451. doi:10.1016/0005-2795(75)90109-9. URL:http://www.sciencedirect.com/

science/article/B73GJ-47T22GD-132/2/b5b0dbd824d44e6edeebf7b8d2613775

27. Nagappan N, Ball T, Zeller A (2006) Mining metrics to predict component failures. In: ICSE ’06: proceedings of the

28th international conference on software engineering. ACM, New York, NY, USA, pp 452–461. doi:10.1145/

1134285.1134349

28. Porter AA, Selby RW (1990) Empirically guided software development using metric-based classification trees. IEEE

Softw 7(2):46–54. doi:10.1109/52.50773

29. Quinlan JR (1986) Induction of decision trees. Mach Learn 1:81–106. doi:10.1007/BF00116251

30. Rosqvist T, Koskela M, Harju H (2003) Software quality evaluation based on expert judgement. Softw Qual J 11:39–55.

doi:10.1023/A:1023741528816

31. Schneidewind NF (1997) Software metrics model for integrating quality control and prediction. In: ISSRE ’97:

proceedings of the eighth international symposium on software reliability engineering. IEEE Computer Society,

Washington, DC, USA, p 402

32. Schneidewind NF (2000) Software quality control and prediction model for maintenance. Ann Softw Eng 9(1–4):79–

101. doi:10.1023/A:1018920623712

33. Schölkopf B, Smola AJ (2002) Learning with kernels. MIT Press

34. Selby RW, Porter AA, Schmidt DC, Berney J (1991) Metric-driven analysis and feedback systems for enabling empirically

guided software development. In: ICSE ’91: proceedings of the 13th international conference on software engineering.

IEEE Computer Society Press, Los Alamitos, CA, USA, pp 288–298

35. Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University Press

36. Tsybakov AB (2004) Optimal aggregation of classifiers in statistical learning. Ann Stat 32(1):135–166

37. Werner E, Grabowski J, Neukirchen H, Rottger N, Waack S, Zeiss B (2007) TTCN-3 quality engineering: using learning

techniques to evaluate metric sets. Lect Notes Comput Sci 4745:54

