
27

Vol. VI No. 2 / October 2011

ISSN: 0973-4503 RNI : UPENG 2006/17831

AUTHOR

Lokesh Khurana

S.P.C. Degree College,

Baghpat.

<<<<<<<<<<<<<<< Abstract
There is no universally accepted definition of software engineering. For some, software

engineering is just a glorified name for programming. If you are a programmer, you might

put “software engineer” on your business card but never “programmer.” Others have

higher expectations. A textbook definition of the term might read something like this: “the

body of methods, tools, and techniques intended to produce quality software.” Rather than

just emphasizing quality, we could distinguish software engineering from programming by

its industrial nature, leading to another definition: “the development of possibly large

systems intended for use in production environments, over a possibly long period, worked

on by possibly many people, and possibly undergoing many changes,” where “development”

includes management, maintenance, validation, documentation, and so forth.

1. INTRODUCTION

Judging by the employment situation, current and future graduates can be
happy with their choice of studies. The Information Technology Association of
America estimated in April 2002 that 850,000 IT jobs would go unfilled in the
next 12 months. The dearth of qualified personnel is just as perceptible in Europe
and Australia. Salaries are excellent. Project leaders wake up at night worrying
about headhunters hiring away some of their best developers—or pondering the
latest offers they received them. Although this trend shows no sign of abating in
the near future, we should not take the situation for granted. An economic
downturn can make employers more choosy. In addition, more people are
learning how to do some programming, aided by the growing sophistication of
development tools for the mass market. It is likely, for example, that many of the
estimated six million people who are Visual Basic developers have not received a
formal computer science education. This creates competition and will force the
real professionals to stand out. In fact, talking to managers in industry reveals that
they are not just looking for employees—they are looking for excellent
developers. This is the really scarce resource. The software engineering literature
confirms3 that ratios of 20 are not uncommon between the quality of the work of
the best and worst developers in a project; managers and those who make hiring
decisions soon learn to recognize where a candidate fits into this spectrum. The
aim of a top educational program is to train people who will belong to the top tier.
Reflecting on why life has been so good, we may note that our constituency—the
people who commission and use our systems—has been remarkably tolerant of
our deficiencies.

Software Engineering

in the Academy

Pp. 27-30

28

Vol. VI No. 2 / October 2011

ISSN: 0973-4503 RNI : UPENG 2006/17831

2. PRINCIPLES

Among the most important things that
professional software engineers know are concepts
that recur throughout their work. Most of these
concepts are not specific techniques. If they include
a technique, they go beyond it to encompass a mode
of reasoning. This defines the most exciting aspect of
being a professional software engineer: the mastery
of some of these powerful and elegant intellectual
schemes that, more than any particular trick of the
trade constitute our profession’s common treasure.
Most of them cannot be taught in one sitting but
rather are learned little by little through trial, error,
and skillful mentoring. The sidebar “The Principles:
What Software Professionals Know” characterizes a
few of these concepts.

3. PRACTICES

At a more mundane level, teaching software
engineering also involves making the students familiar
with practical techniques that have proved to be
productive and are a key part of the trade. Examples
include the following:

• Configuration management. Although it is one
of the most important practices that every
project should apply, configuration management
is not used as widely or systematically as it
should be. Configuration management is based
on simple principles and supported by readily
available tools.

• Project management. It does not always have
to be such a hard task, but many software
engineers are terrible at project management.
Although the ample literature on software project
management is not perfect, it contains gems that
should be taught to all software students because
most of them will at some point exert a project
management role.

• Metrics. This is one of the most underused
techniques in software development. Much of
the current literature on metrics is not very good
because it lacks a scientifically sound theory of
what is being measured and why it is relevant. All
the same, we should teach students how to use
metrics to quantify applicable project and
product attributes, to evaluate the claims of

methods and tools through objective criteria, and
to use quantitative tools as an aid to prediction
and assessment.

• Ergonomics and user interfaces. Users of
software systems expect high-quality user
interfaces; like the rest of the system, the user
interface must be engineered properly, a skill
that can be learned.

• Documentation. Software engineers do not just
produce software—they should also document
it. A course on technical writing should be part of
any software curriculum. Here engineering meets
the humanities.

• User interaction. The best technology is useless
unless it meets the needs of its intended users. A
good software engineer must know how to listen
to customers and users.

• High-level system analysis. To solve a problem
through software, you must first understand and
describe the problem. This task of analysis is an
integral part of software engineering, and it’s as
difficult as anything else in it.

• Debugging. Errors and imperfections are an
integral part of the software engineer’s daily
work. We need systematic and effective
debugging techniques to cope with them. It is not
hard to find other examples of strong, robust
techniques that every professional should know
and practice.

4. APPLICATION

Under the heading “applications,” I include
the traditional specific areas of software techniques:
fundamental algorithms and data structures, compiler
writing, operating systems, databases, artificial
intelligence techniques, and numerical computing.
The aim here is not to be imperialistic by attaching
these disciplines artificially to software engineering.
On the contrary, it is to insist that whatever their
individual traditions, techniques, and results may be,
these are software subjects, and we should teach
them in a way that is compatible with the particular
view of software engineering the institution chooses.
The advantage is mutual: The specialized subjects
benefit from more methodologically aware
students—for example, programming projects can

29

Vol. VI No. 2 / October 2011

ISSN: 0973-4503 RNI : UPENG 2006/17831

focus on the subject at hand, rather than being
distorted by pure programming issues because the
students have already learned general design and
programming skills—and they help meet software
engineering goals by providing a wealth of new
examples and applications.

5. TOOLS

The fashionable tools of the moment should
not determine pedagogy. Indeed, Parnas has some
rather strong words to say against teaching specific
languages and tools. But if these aspects should not
be at the center, we also should not ignore or neglect
them. We must expose students to some of the state-
of-the-art tools that industry uses. This exposure
should proceed with a critical spirit, encouraging
students to see the benefits and limitations of these
tools—and to think of better solutions. A tools
curriculum cannot and should not be exhaustive; it is
better to select a handful of programming languages
and a few popular products and help the students
understand them in depth. If they need other tools,
they will learn them on the job. But they must have
seen a few during their studies to have a general idea
of what’s available and what their future employers
expect.

7. THE INVERTED CURRICULUM

An idea that complements the multiyear
project is to capitalize on one of the great promises
of modern software technology: reuse. The principle
of the inverted curriculum (a term borrowed from
debates on electrical engineering education8), or
“progressive opening of the black boxes” (a
somewhat longer name but more precise9), is that
the students first use powerful tools and components
as clients for their own applications, and then
progressively lift the hood to see how things are
made, make a few modifications, and add their own
extensions. The progression is from the consumer
side to the producer side, but focuses from the start
on powerful and possibly large examples. There are
several benefits. Right from the beginning, the
students get to deal with impressive programs, like
those that handle graphics. The teaching capitalizes
on this “wow effect” and the ability to work with
immediately visible results. Today’s students have

used electronic games and PCs from an early age,
and they will not be too impressed by the typical
introductory programming examples (the eight
queens and such). Trying to get them excited is
pedagogy, not demagogy.

8. FUTURE SCOPE

Wirth’s compilers made the Swiss Federal
Institute of Technology in Zurich a household name in
the software world, but it is hard to imagine a
compiler, however innovative, achieving a similar
result today. A university group would have a tough
time competing with the hundreds of developers
behind Microsoft’s Visual C++ or even those behind
the GNU GCC compiler—not a commercial effort
but also not an academic one in any accurate sense
of the term. People, students included, expect a
compiler to come with a sophisticated development
environment with all the trappings—a visual
debugger, browser, graphical user interface designer,
and configuration management facilities. For all the
criticism that academic circles give Visual C++ and
similar tools, which they may deserve in part, they
provide a wealth of resources and facilities (some, it
must be said, very cleverly devised), setting a high
standard for anyone who wants to compete. If such
competition is hard to sustain nowadays in former
areas of academic excellence, academics must find
new markets in which they can make their mark. I
make no pretense of knowing what all these new
fields will be, but one that I find promising is the
convergence of component-based development and
quality. The industry claims that it is widely
embracing the notion of reusable components. But
there is no guarantee of quality for these
components, no standard, no rules, and no qualifying
agency. The risks are as huge as the opportunities. A
major endeavor can fail in a catastrophic way
because of a small deficiency in one of its more
humble components. This kind of situation led to the
failure of the initial launch of the Ariane 5 rocket—
due to the poorly executed reuse of a minor software
component—and delayed the entire industrial
enterprise by a year and a half, costing European
taxpayers an estimated $10 billion.10 Quality,
however, is—or should be academia’s specialty.
Huge opportunities can spring from this

30

Vol. VI No. 2 / October 2011

ISSN: 0973-4503 RNI : UPENG 2006/17831

convergence. A long-term project, the source of
PhDs, papers, industry collaborations, and a robust
reputation, might involve

• Defining standards for components;
• Developing model high-quality components for

everyone to appreciate, criticize, and emulate;
• Setting up qualification metrics, possibly a

component maturity model;
• Setting up qualification suites;
• Developing new methods and tools for better

components, including proof technology, testing
techniques, documentation techniques, and
validation techniques; and

• Setting up an organization to qualify and label
components that third parties submit.

9. CONCLUSION

For all the talk about “software engineering”
in the literature, this article included, we must accept

that the term remains in part a slogan, as it was when
first introduced almost 35 years ago. Since then,
however, we have learned enough to teach our
students a coherent set of principles and techniques,
without hiding from them or ourselves the many
remaining uncertainties. I have tried to maintain a
balance here between the conceptual and the
operational the principles and techniques as I think a
software curriculum should do. I have tried to show
that we do not need to sacrifice either of these
aspects for the other, and to describe a challenge
worth tackling: to set up a program of teaching and
research that is at the same time serious, ambitious,
attractive to the students, technically up to date,
firmly rooted in the field’s practice, and scientifically
exciting.

REFERENCES

1. D.L. Parnas, “Software Engineering Programmes Are Not Computer Science Programmes,” CRL Report 361,

Communication Research Laboratory, McMaster Univ., Apr. 1998; to be published in Annals of Software Eng., 2001.

2. Information Technology of America, “Major New Study Finds Enormous Demand for IT Workers: Research Pinpoints

Hot Jobs and Skills Needed, Offers Insights on Employer Preferred Training Approaches,” http://www.itaa.org/news/

pr/PressRelease.cfm?ReleaseID=955379119.

3.. B.W. Boehm, Software Engineering Economics, Prentice Hall, Upper Saddle River, N.J., 1981.

4. P.G. Neumann, “Illustrative Risks to the Public in the Use of Computer Systems and Related Technology,” http://

www.csl.sri.com/users/neumann/illustrative.html.

5. D. Tsichritzis, “The Changing Art of Computer Science Research,” in Electronic Commerce Objects, D. Tsichritzis, ed.,

Centre Universitaire d’Informatique, Université de Genève, 1998.

6. B. Meyer, Introduction to the Theory of ProgrammingLanguages, Prentice Hall, Upper Saddle River, N.J., 1990.

7. C. Mingins et al., “How We Teach Software Engineering,” J. Object-Oriented Programming, Feb. 1999, pp. 64-75.

8. B. Cohen, “The Education of the Information Systems Engineer,” Electronics & Power, Mar. 1987, pp. 203-205.

9. B. Meyer, Object-Oriented Software Construction, 2nd ed., Prentice Hall, Upper Saddle River, N.J., 1997.

10. J. Jézéquel and B. Meyer, “Design by Contract: The Lessons of Ariane,” Computer, Jan. 1997, pp. 129-130. Bertrand

Meyer is chief technology officer of Interactive Software Engineering, Santa Barbara, Calif.,and an adjunct professor at

Monash University, Melbourne.His books include Object-Oriented Software Construction (Prentice Hall, Upper Saddle

River, N.J.,1997). Contact him at Bertrand_Meyer@eiffel.com.

